Package: CausalMetaR 0.1.2

Sean McGrath

CausalMetaR: Causally Interpretable Meta-Analysis

Provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2024) <doi:10.48550/arXiv.2402.04341> for a detailed guide on using the package.

Authors:Yi Lian [aut], Guanbo Wang [aut], Sean McGrath [aut, cre], Issa Dahabreh [aut]

CausalMetaR_0.1.2.tar.gz
CausalMetaR_0.1.2.zip(r-4.5)CausalMetaR_0.1.2.zip(r-4.4)CausalMetaR_0.1.2.zip(r-4.3)
CausalMetaR_0.1.2.tgz(r-4.5-any)CausalMetaR_0.1.2.tgz(r-4.4-any)CausalMetaR_0.1.2.tgz(r-4.3-any)
CausalMetaR_0.1.2.tar.gz(r-4.5-noble)CausalMetaR_0.1.2.tar.gz(r-4.4-noble)
CausalMetaR_0.1.2.tgz(r-4.4-emscripten)CausalMetaR_0.1.2.tgz(r-4.3-emscripten)
CausalMetaR.pdf |CausalMetaR.html
CausalMetaR/json (API)
NEWS

# Install 'CausalMetaR' in R:
install.packages('CausalMetaR', repos = c('https://ly129.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ly129/causalmetar/issues

Datasets:

On CRAN:

Conda:

3.60 score 2 stars 3 scripts 251 downloads 4 exports 40 dependencies

Last updated 2 months agofrom:649585878d. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 15 2025
R-4.5-winOKFeb 15 2025
R-4.5-macOKFeb 15 2025
R-4.5-linuxOKFeb 15 2025
R-4.4-winOKFeb 15 2025
R-4.4-macOKFeb 15 2025
R-4.3-winOKFeb 15 2025
R-4.3-macOKFeb 15 2025

Exports:ATE_externalATE_internalSTE_externalSTE_internal

Dependencies:bitopscaToolsclicodetoolscrayoncvAUCdata.tabledigestforeachgamglmnetgluegplotsgtoolshmsiteratorsKernSmoothlatticelifecyclemathjaxrMatrixmetadatmetafornlmennetnnlsnumDerivpbapplypkgconfigprettyunitsprogressR6RcppRcppEigenrlangROCRshapeSuperLearnersurvivalvctrs