Package: CausalMetaR 0.1.2

Sean McGrath

CausalMetaR: Causally Interpretable Meta-Analysis

Provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2024) <doi:10.48550/arXiv.2402.04341> for a detailed guide on using the package.

Authors:Yi Lian [aut], Guanbo Wang [aut], Sean McGrath [aut, cre], Issa Dahabreh [aut]

CausalMetaR_0.1.2.tar.gz
CausalMetaR_0.1.2.zip(r-4.5)CausalMetaR_0.1.2.zip(r-4.4)CausalMetaR_0.1.2.zip(r-4.3)
CausalMetaR_0.1.2.tgz(r-4.4-any)CausalMetaR_0.1.2.tgz(r-4.3-any)
CausalMetaR_0.1.2.tar.gz(r-4.5-noble)CausalMetaR_0.1.2.tar.gz(r-4.4-noble)
CausalMetaR_0.1.2.tgz(r-4.4-emscripten)CausalMetaR_0.1.2.tgz(r-4.3-emscripten)
CausalMetaR.pdf |CausalMetaR.html
CausalMetaR/json (API)
NEWS

# Install 'CausalMetaR' in R:
install.packages('CausalMetaR', repos = c('https://ly129.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ly129/causalmetar/issues

Datasets:

On CRAN:

3.78 score 2 stars 3 scripts 224 downloads 4 exports 39 dependencies

Last updated 16 days agofrom:649585878d. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 16 2025
R-4.5-winOKJan 16 2025
R-4.5-linuxOKJan 16 2025
R-4.4-winOKJan 16 2025
R-4.4-macOKJan 16 2025
R-4.3-winOKJan 16 2025
R-4.3-macOKJan 16 2025

Exports:ATE_externalATE_internalSTE_externalSTE_internal

Dependencies:bitopscaToolsclicodetoolscrayoncvAUCdata.tableforeachgamglmnetgluegplotsgtoolshmsiteratorsKernSmoothlatticelifecyclemathjaxrMatrixmetadatmetafornlmennetnnlsnumDerivpbapplypkgconfigprettyunitsprogressR6RcppRcppEigenrlangROCRshapeSuperLearnersurvivalvctrs