Package: CausalMetaR 0.1.2

Sean McGrath

CausalMetaR: Causally Interpretable Meta-Analysis

Provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2024) <doi:10.48550/arXiv.2402.04341> for a detailed guide on using the package.

Authors:Yi Lian [aut], Guanbo Wang [aut], Sean McGrath [aut, cre], Issa Dahabreh [aut]

CausalMetaR_0.1.2.tar.gz
CausalMetaR_0.1.2.zip(r-4.5)CausalMetaR_0.1.2.zip(r-4.4)CausalMetaR_0.1.2.zip(r-4.3)
CausalMetaR_0.1.2.tgz(r-4.4-any)CausalMetaR_0.1.2.tgz(r-4.3-any)
CausalMetaR_0.1.2.tar.gz(r-4.5-noble)CausalMetaR_0.1.2.tar.gz(r-4.4-noble)
CausalMetaR_0.1.2.tgz(r-4.4-emscripten)CausalMetaR_0.1.2.tgz(r-4.3-emscripten)
CausalMetaR.pdf |CausalMetaR.html
CausalMetaR/json (API)
NEWS

# Install 'CausalMetaR' in R:
install.packages('CausalMetaR', repos = c('https://ly129.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ly129/causalmetar/issues

Datasets:

On CRAN:

4.15 score 2 stars 1 scripts 214 downloads 4 exports 39 dependencies

Last updated 6 months agofrom:fcfb16bf7f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winOKNov 19 2024
R-4.5-linuxOKNov 19 2024
R-4.4-winOKNov 19 2024
R-4.4-macOKNov 19 2024
R-4.3-winOKNov 19 2024
R-4.3-macOKNov 19 2024

Exports:ATE_externalATE_internalSTE_externalSTE_internal

Dependencies:bitopscaToolsclicodetoolscrayoncvAUCdata.tableforeachgamglmnetgluegplotsgtoolshmsiteratorsKernSmoothlatticelifecyclemathjaxrMatrixmetadatmetafornlmennetnnlsnumDerivpbapplypkgconfigprettyunitsprogressR6RcppRcppEigenrlangROCRshapeSuperLearnersurvivalvctrs