Package: CausalMetaR 0.1.2
Sean McGrath
CausalMetaR: Causally Interpretable Meta-Analysis
Provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset, including those of Dahabreh et al. (2019) <doi:10.1111/biom.13716>, Robertson et al. (2021) <doi:10.48550/arXiv.2104.05905>, and Wang et al. (2024) <doi:10.48550/arXiv.2402.02684>. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects. See Wang et al. (2024) <doi:10.48550/arXiv.2402.04341> for a detailed guide on using the package.
Authors:
CausalMetaR_0.1.2.tar.gz
CausalMetaR_0.1.2.zip(r-4.5)CausalMetaR_0.1.2.zip(r-4.4)CausalMetaR_0.1.2.zip(r-4.3)
CausalMetaR_0.1.2.tgz(r-4.4-any)CausalMetaR_0.1.2.tgz(r-4.3-any)
CausalMetaR_0.1.2.tar.gz(r-4.5-noble)CausalMetaR_0.1.2.tar.gz(r-4.4-noble)
CausalMetaR_0.1.2.tgz(r-4.4-emscripten)CausalMetaR_0.1.2.tgz(r-4.3-emscripten)
CausalMetaR.pdf |CausalMetaR.html✨
CausalMetaR/json (API)
NEWS
# Install 'CausalMetaR' in R: |
install.packages('CausalMetaR', repos = c('https://ly129.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ly129/causalmetar/issues
- dat_external - External dataset
- dat_multisource - Multi-source dataset
Last updated 6 months agofrom:fcfb16bf7f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | OK | Nov 19 2024 |
R-4.5-linux | OK | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:ATE_externalATE_internalSTE_externalSTE_internal
Dependencies:bitopscaToolsclicodetoolscrayoncvAUCdata.tableforeachgamglmnetgluegplotsgtoolshmsiteratorsKernSmoothlatticelifecyclemathjaxrMatrixmetadatmetafornlmennetnnlsnumDerivpbapplypkgconfigprettyunitsprogressR6RcppRcppEigenrlangROCRshapeSuperLearnersurvivalvctrs